

Asset-Centric Security Risk Assessment of Software Components

Tobias Rauter, Institute for Technical Informatics 2016-01-19

IT.

Topic

ITI

1. Introduction

2. Approach

3. Evaluation

4. Conclusion and Outlook

ЦΤІ

Context/Motivation

- Security in complex (software) systems
- Restrict access to critical resources
 - What are these resources?
- Separation of privilege
 - How?
- Security assessment and audits
 - Which parts?

Primary Security Goals of Your Organization

- Protect valuable objects (Assets)
 - value (=> impact)
 - exposure (=>probability)
- Risk

		Likelihood of Incident Scenario					
		Very Low	Low	Medium	High	Very High	
Business Impact	Very Low	0	1	2	3	4	
	Low	1	2	3	4	5	
	Medium	2	3	4	5	6	
	High	3	4	5	6	7	
	Very High	4	5	6	7	8	

ШΤІ

Risk Management

- Basically: Identify -> Rate -> Treat
- On organizational level
 - Various (somewhat similar) approaches
 - Here: ISO 27005

ЦΤІ

Software Security

- 'Security by Design'
- Critical resources?
 - Organizational level assets mapped into SW architecture
- SW components use or protect these assets
 - 'Secondary assets'
 - Useful in organizational level assessment?
 - Asset risks depend on SW components?
- Critical Components?

ЦΤІ

This Work: Combination

- Feed-backed high to low level risk analysis
 - Use information of high level risk analysis in threat modeling
 - Feed-back adjustments on asset risks
- Classification based on criticality (of accessed assets)
- Separation of privilege with special components
- Evaluation with manufacturing system use-case

	Approach				
8	Торіс				

- 2. Approach
- 3. Evaluation

4. Conclusion and Outlook

ITI

ШΤІ

Component Model

- Architectural model of software system
- Simple component model with (non-directed) data-flows
 - Software components
 - Assets

ШΤІ

Component Classification

- Privilege rating
 - Value of accessed assets + 'risk factors'
- Represents impact-part of the risk
 - Probability may result from threat modeling process
- Access via privileges (foundation for future work)

ШΤІ

Component Classification: Risk Factor

- Privileges may interfere
 - Access to sensitive data
 - Exposed to network
- 'Risk Factors' are quantified per asset
- Map privilege => value

ШΤІ

Component Classification: Privilege Rating

- Privilege Rating PR of Component C
- 'Value' Crit() of all accessed assets A
- Risk factors RF of this assets for all other privileges P

$$PR(C) = \sum_{A = Assets(C)} \left(Crit(A) + \sum_{P = Priv(C)} RF(A, P) \right)$$

Classification: Component Composition

- Merge Privileges
- Calculate Privilege Rating
- Directed information flows
 - Future work
- Restricting components
 - Filter

UTI

Filter Components

- Special component
- Transform assets:

$$A \Rightarrow \emptyset(block) \tag{1}$$
$$A \Rightarrow A'(reduction) \tag{2}$$
$$A, B \Rightarrow C(transformation) \tag{3}$$

ITI

- Filter Components
 - Authentication
 - 'All Data' ⇒ 'Data of User X'
 - Encryption
 - 'Data', 'Key' ⇒ 'Encrypted Data'

ШΤІ

Trust Domain

- Components that share privileges
- Minimize size (attack surface)
- Add filter components
 - Separation, Reduction
- Iterate until acceptable risk and size

ШΤІ

- Threat Modeling
 - Prioritize
 - High risk components (domains)
 - Protection components (filter on borders)
 - Unleashes new threats
 - Feed back to high-level risk management process

	Evaluation	Graze
21	Торіс	
	1 Introduction	

- 2. Approach
- 3. Evaluation

4. Conclusion and Outlook

ШΤІ

Use Case

- Manufacturing system
- Embedded control systems
- Manufactures receive test equipment
- Central database (of device vendor)
 - Send production data
 - Get images, certficates, etc.

Central server simplified for this paper

02

System Overview

²⁴ Asset Mapping

Name	Crit(A)	Risk Factors
Credentials	100	Network(WAN), 10
Manufacturing	10	Network(WAN), 5
Common	0	
LAN	10	Network(WAN), 2
WAN	10	
User-Specific Data	5	Network(WAN), 2
Test Data	5	Network(WAN), 2

25

Component Classification

Trust Domain Reduction

Trust Domain Reduction

Component Name	w/o	Filter	with Filter	
	Domain	Criticality	Domain	Crit.
Webserver	0	1120	2	10
Application	0	1120	2	10
DB Access	0	1120	2	10
Test Interface	0	1120	3	8
Backup Service	0	1120	1	125
Backup Server	0	1120	1	125
Authenticator	-	-	1	125
User-Specific	-	-	1	125
Test-Filter	-	-	2	10
Network-Filter	-	-	2	10

ШΤІ

- Evaluation
 - Domain 1
 - Full access
 - Critical
 - Domain 2
 - Exposed through internet
 - User-specific data
 - Threat modeling should be done
 - Domain 3
 - Relatively few privileges
 - Weakest security requirements

ШΤІ

Evaluation cont.

- Component criticality is reduced drastically
- Focus threat modeling efforts
- New threats and assets are feeded back to high-level RM
 - Supplementing threat trees for assets
 - Ease decision for resource allocation and treatment strategies

30

Topic

1. Introduction

2. Approach

3. Evaluation

4. Conclusion and Outlook

Conclusion

ШΤІ

- Risk management in complex SW systems
- Systematic approach
- High-level assessment supports SW-assessment
- Systematic reduction of trust domains
- Prioritized threat modeling
- Feedback for high-level assessment

² Future Work

ШΤІ

- Directed information flows
- Fine grained privileges (read, write, etc.)
- Find good values for risk factors
- Automate trust domain reduction