THE SECURITY FOR SAFETY PROBLEM IN CYBERPHYSICAL SYSTEMS

Semen Kort, Ekaterina Rudina
Critical Infrastructure Defense, Future Technologies
MOTIVATION

Why this research has to be done

• The continued disputes about the validity of using cybersecurity methods to enhance the safety of cyberphysical systems

• The lack of threat modeling based approaches to Security for Safety assessment

• The need of some formal reasoning on use of MILS findings and recommendations in our current projects related to the cyberphysical systems security
THE GOAL

This research aims to

• Analyze the relations between security and safety in cyberphysical systems

• Perform threat modeling and identify the possible weaknesses in enforcement of security and safety considered together

• Propose an enhanced approach to the security and safety enforcement based on MILS architecture
Cyberphysical systems exist in at least two types of environment: the **informational** environment and the **physical** environment.

Issues may arise from both types of environment and affect physical aspects, informational aspects and the system itself.
THE PROBLEM IN FOCUS

- The vector I-S-P relates to attacks targeting the physical environment of the system.
- The problem of protecting against dangerous impacts on system safety caused by cyberattacks – Security for Safety (SfS) problem.
SECURITY FOR SAFETY PROTECTION

Physical environment

Informational environment

Environment monitoring

Input validation

System monitoring

System

Safety enforcement (SIS or other mechanism)

Possible attack vector (I-S-P)

Monitoring data

Safety enforcement
THREAT MODELING

We apply STRIDE model to identify weaknesses in the Security for Safety protection scheme

Object under attack

- input control, monitoring sensors channels, safety enforcement mechanism and channels

For each object

- Security/Safety assumptions that might not remain true (for each object)
- Defect or vulnerability exploited by attacker
- Possible threats according STRIDE (for each object)
- Prior countermeasures and recommendations
PROPOSED MILS-BASED APPROACH to provide the solution for the SfS problem

- **Proposal #1:**
 Implement validation of untrusted external input in a separated MILS domain

- **Proposal #2:**
 Run monitoring sensors in the dedicated domains

- **Proposal #3:**
 Do not expose monitoring data to application domains

- **Proposal #4:**
 Do not expose the safety enforcement mechanism, implement special security measures

- **Proposal #5:**
 Use dedicated channel(s) to put the system or its components in a safe state
CONCLUSION

The conducted research helps us

- Make determining of significant threats in cyberphysical systems more clear (by instantiating the I-S-P vector, not by using CIA triad or some other irrelevant concept)
- Identify the possible weaknesses in our ‘Security for Safety’ solutions
- Reasonably enhance the approach to the security and safety enforcement using MILS architecture principles
LET'S TALK?

Kaspersky Lab HQ
39A/3 Leningradskoe Shosse
Moscow, 125212, Russian Federation
Tel: +7 (495) 797-8700
www.kaspersky.com